INTERIOR POINTS OF CONVEX HULLS
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ABSTRACT

If a set X < E™ has non-empty k-dimensional interior, or if some point is
k-dimensional surrounded, then the classic theorem of E. Steinitz may be
extended. For example if X < E"has int, X #£ 0, (0 £ k < n)and if p eint
con X, then p ¢ intcon Y for some Y< X with card Y < 2n — k + 1.

1. Results. For X in a linear space, the k-interior of X, denoted int, X, is
the set of all points s such that s is in the relative interior of some k-simplex
contained in X ; equivalently s € int, X if and only if there exists a k-dimensional
flat F such that s is interior to X N F relative to F. Note that int; X = X and
if X is a subset of an n-dimensional space then int,X is the usual interior of X,
which will also be denoted by int X. We will let con X, aff X, lin X, and card X
denote the convex hull, the affine span, the linear span, and the cardinality of X,
respectively. Of the following three results, the first two are due to Steinitz [5]
and the third to Reay [4].

A. If XcE" and peintconX then peintconY for some Y< X with
card Y< 2n.

B. If X < E" is not contained in the union of n lines through p and if
peintcon X then peintconY for some Yo X with cardY<2n—1.

C. For nz3, if X< E"is connected and if p¢ X but peintconX, then
peintconY for some Yo X with cardY<2n — 2.

The purpose of this paper is to prove (with other conditions on X) some
analogous results, principally the following:

1.1 TueoreM. If X c E"hasint, X # (0L k £ n) and if peintcon X then
peintconY for some Yo X with cardY<2n—k + 1.

1.2 THrOREM. For X < E"if there is a k-dimensional flat F(0£k=<n-1)
with int, (X N F) # ¢ (thus int, X#QY), and if p¢ F is such that peintcon X,
then peintconY for some Yo X with cardY<2n — k.

1.3 CoroLLARY. If X < E"hasintX #(J and if peintcon X then peintconY
Jor some Yc X with cardY=n+1.

Note that 1.3 is a special case of both 1.1 (with k=n) and of 1.2 (with
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k =n —1). Except for the case k = 0 in 1.1, each of these is a best possible result
in the sense that for each result there are configurations which satisfy the hypo-
thesis, but for which card Y cannot be reduced further.

1.4 ExaMPLE In 1.1, to see that 2n—k+ 1 is “best’” for 1Sk <nlet p
be the origin in E”, let B be a solid k-dimensional ball centered at p, let A
be a linear basis for an (n—k)-dimensional linear subspace supplementary to
linB (A=¢ when k=n) and let X =BUAU(—A4)={-a|acA}. Then if
peintcon Y with X < X, Y must contain A U(— A4) together with at least k + 1
points of B, so cardY=22(n—k)+k+1=2n—k+1.

1.5 ExaMpPLE. In 1.2, to see that 2n —k is “‘best” for 0<k<n-1, let p
be the origin in E”, let g # p, and let T be a solid k-dimensional ball centered
at —q. with p¢aff T. (For k=0, let T={—gq}.) Let V be a linear basis for an
(n ~ k — 1)-dimensional linear subspace supplementary to lin T= af({p} U T)
and let X ={q} UT UV U(-V). Then if peintconY with Y= X, Y must
contain VU(—V)U{q} together with at least k+1 points of T, so
cardYz2n—-k—-1)+k+2=2n—k.

2. Proofs. The proofs will be based on positive bases. Early papers on pos tive
bases were those of Chandler Davis [2] and McKinney [3]. We will use the ter-
minology and theory as presented in Bonnice-Klee [1, pp. 5-7], and Reay [4,
pp. 5-8]. In brief, for a set U contained in a linear space L, pos U will denote the
set of all finite lineat combinations of elements of U having all coefficients non-
negative. If A is a subset of Lsuch that posU = A then we say that U positively
spans A. Thus posU is the cone or “‘wedge’’ generated by U having the origin
as vertex. The set U is said to be positively independent if for all ue U, u¢
pos(U ~ {u}). If U is positively independent and positively spans a linear space
L, then U is a positive basis for L. Every linear space Ladmits a positive basis.
In fact, if Lis n-dimensional and k is the cardinality of a positive basis for Lthen
n + 1 £ k £ 2n and moreover all of these values of k are realizable. A basis with
cardinality n + 1 is called a minimal basis for L. A linear subspace S of Lis a
spanned subspace with respect to U if U N S positively spans S. In this case, if S
is k-dimensional (k= 1) and U NS has k + 1 members (and hence UNS is a
minimal basis for S), S is called a minimal subspace with respect to U. The
important connecting link between positive bases and the results we want to
derive about a point peint con X is the obvious fact that for X contained in an
n-dimensional space E, Oeint con X if and only if pos X =E.

2.1 LeMMA. If X positively spans an n-dimensional linear space E, if M
is a d-dimensional (1 £d £ n) subspace of E and if U c X is such that pos
U = M where card U =, then there is a subset Yof X withcard YS2(n—d) + f
which positively spans E, and hence the origin is in int con Y. In particular if
M is a minimal subspace with respect to X, catrd Y=<2n —d + 1.
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Proof. The case d = n has been noted above. For 1 £d <n -1, let S be
an (n — d)-dimensional subspace of E such that E is the direct lineat sum of M
and S and let 7 be the linear projection of E onto S with kernel M. Then
n(X ~ M) positively spans S and hence there is a subset W of X ~ M with
n—d+ 1< card W< 2(n — d) such that nW positively spans S. By assumption
thete is a U < X with card U = f such that pos U = M. Letting Y=U U W, it
follows that pos Y= E (For details see [1, Lemma 2.7] or [4, Lemma 2.3]) and
that card Y=2(n—d)+f.

Proof of 1.1 and 1.2. Since we may assume that p is the origin, 1.1 follows
from 2.1 once it is shown that there is a minimal subspace with respect to X
having dimension at least k. To do this, begin by taking a point g €int, X such
that g # p and let B* be a closed solid k-dimensional ball centered at q and
contained in X . By A. above, p is interior to some subset of X which has at most
2n points. Adjoining this finite set to B* we obtain a compact subset having p in
its interior. Thus we may assume that X is compact and hence so is con X . Then
the ray from g through p intersects the boundary of con X in some point recon X .
Let H be a hyperplane through r supporting con X . Since H Ncon X = con(H N X
by a theorem of Caratheodory ([4, Theorem 1.1]) there is a subset Tof HNX
with card T < n such that reconT. By taking card T minimal with respect to
the property that reconT, T may be assumed to consist of the verticles of a
j-simplex (0 < j < n — 1) having r in its relative interior. Let L denote pos ({g} UT)
and let F denote aff B*, so that LNF is an affine space containing ¢. If
LNF =F then Lo F and since ¢ is in X, Lis a minimal subspace with respect
to X having sufficient dimension. If L N F is properly contained in F, let A be
an affine subspace of F which would be supplementary to LN F in F if g were
the origin. Letting e denote the dimension of A4, then e>1 and 4 N B* = B°
is a closed e-dimensional ball centered at g. Thus there is an e-simplex with vertex
set V contained in B and having ¢ in its relative interior. Then pos(VUT)
=1lin(V UT) and

dimpos(V UT)=dimaff T +1=(cardV)—1+card T

so pos(V U T) is a minimal subspace with respect to X which contains F (and
p) and so is at least k-dimensional. This completes the proof of 1.1.

To prove 1.2, we note that under the stronger hypothesis of 1.2, B*
may be chosen in the above ptoof so that p ¢ F = aff B* and hence the ray from g
through p intersects F only at g. Therefore aff({p} U F) is (k -+ 1)-dimensional.
But minimal subspace pos(V UT) contains aff({p} UF) and therefore is at
least (k + 1)-dimensional. Now by 2.1 thete is a subset Y of X with
cardY=2n—(k+ 1)+ 1=2n—k such that peintcon Y.

3. Apparent interiors. The contribution of a point xe X to the set posX
is not determined by how far x is from the origin, but only by the ditection of x
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from the origin. That is, x may be replaced in X by ax (where « is any positive
number) and pos X will not be changed. As a result conditions of the form ‘X
is connected” or “‘int, X# ("’ may often be replaced by much weaker con-
ditions in theorems where the proofs use the theory of positive bases.

As an example, for a given point pe E”, let n, denote the usual radial pro-
jection of E" ~ {p} onto the unit sphere centered at p. We say that X appears
to be connected from p provided that n,(X ~ {p}) is a connected subset of the
sphere. The result C in the first section may now be given in the much stronger
form:

D. For n =3, if X cE" appears to be connected from p and peintcon X
then peintcon Y for some Y= X with catd Y <2n — 2.

Note that the set X may appear connected from p and yet be totally disconnected.

To obtain a similar generalization of 1.1 and 1.2, we say that X appears to
have k-interior from p if there exists a k-dimensional flat F missing p and having
the following property:

If F’ denotes the cone p + pos(F — p), (that is, the cone with vertex p and
generated by F) and if n, maps F' radially from p onto F then int, n,(X U F’) # .
Equivalently, X appears to have k-interior from p if there exists a k-dimensional
flat F missing p and such that in L = aff({p} UF) if F’ denotes the open ‘‘half
of L’ containing F and bounded by the translation of F to p then the radial pro-
ection of X U F' from p has nonempty k-interior.

3.1 THEOREM. If X c E"appears to have k-interior from p0<k<n-1),
and if peintconX, then peintconY for some Yc X with cardY<2n— k.

Proof. We may assume that p is the origin. With the notation of the preceed-
ing definition, let X' =n, (X NposF)<F and apply 1.2 to get a subset Y’ of
X U X' for which peintconY’ with card Y’ <2n — k. Now for each yeY’,
a,yeX for some a,>0. Let Y = {a,,oc]_ve Y’}. Then Y<X, peintcon?,
and card Y<2n — k.

For 1 £k < n, we say that g e E" is k-surrounded by X < E" if there exists a
k-dimensional flat F through g with the following property: If =, is the radial
projection of E" onto the unit n-shell {z€ E :|z — q| =1} centered at ¢, then
n(X N F)is all of the unit k-shell at g in F. (Note that if q is k-surrounded, then
X appears to have (k—1)-interior from g.) With this notation we may obtain
a theorem concerning any peintconX whether X appears to have k-interiot
from p or not.

3.2 THEOREM. For X c E"if there exists some point of E "which is k-sur-
rounded (1 £k £n) by X and if peintconX then peintconY for some Yo X
with catrd Y<2n—-k+1.

That 2n — k + 1 is “‘best” is seen from Example 1.4.
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3.3 THEOREM. For X — E" and peintcon X if there is a k-dimensional flat
F missing p (1 £k £n—1) and a point q € F for which n (X NF) is the entire
unit k-shell at q in F (thus q is k-surrounded by X) then peintconY for some
Yo X with cardY £2n — k + 1. Moreover, if there is a such a q in X then
there is a Y as stated but having cardY<2n — k.

That 2n — k is best seen from Example 1.5. The following example shows
that 2n — k + 1 cannot be improved on.

3.4 ExaMPLE. Let V U W be a linear basis for E" where V and W are disjoint
and Vhas k + 1 members. Let X = (— W) U W U(—V) U boundary con V. Then
F =affVis a k-dimensional flat and, if ¢ is in the relative interior of k-simplex
con ¥V, n(X U F) is the entire k-shell at g in F. Letting p be the origin, if peint
con Ywith Y =« X, Y must contain (— W) U W U (- V) together with at least two
points of the boundary of conV. Thus cardY22(n—k—-1D+(k+1)+2=
2n—-k+1.

Proof of 3.2 and 3.3. We may assume p is the origin. Since some g is k-sur-
tounded by X, there is a k-dimensional flat F through g for which n (X NF)
is all of the unit k-shall § at g in F. We may assume that g # p because 3.2 follows
from 3.1 in the special case when p = g. The proofs proceed as the proofs of 1.1
and 1.2 except that the role of B*(the closed solid k-dimensional ball centered
at gq) is played by S. So in this setting, F denotes aff S and again L denotes
pos([q] U T)=aff({p} U T). If gisin X or if LNF is a proper affine subspace
of F then as in that proof we obtain a subset V of S whose convex hull is an
e-simplex having g in its relative interior, and ¥ U T is a minimal positive basis
for the subspace pos(V U T) of dimension at least k (dimension at least k + 1
with the hypothesis of 3.3). Now a point ve V might not be an element of X,
but it is the radial projection 7,x, of some point x,e X . If ¥’ is the set of e + 1
points x, € X thus obtained from the e + 1 pointsof V, then pos (V' U T) = pos
(V U Tand the proof is completed by applying 2.1 as before, obtaining Y= X
with pe int con Y and card Y < 2n—k+1 in case of 3.2 and card
Y<2n —k in the case of 3.3

There remains only the case where g ¢ X. In this case for both 3.2 and 3.3,
we have to find a Yo X with peintconY and card Y<2n — k+ 1. As noted
above, we may assume that LNF =F and hence LoF.

If pe F, then ray pq is contained in F and therefore intetsects S. Thus there
is a point x € X on the open ray from p through g. Hence pos({x} U T) equals
Land is a minimal subspace with respect to X having dimension > k. Again
2.1 yields a desired Y.

So assume that p¢ F. Any line in F through q has at least one point of X on
each side of g. Let x, and x, be two such points of X such that gecon{x,,x,}.
Then pos({x;,x;} UT)>pos({g} UT)=L and, since x, and x, are in
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Fc L, pos ({x4,x,} UT) = L. With j+ 1 denoting card T,since pe L~F,
jt+1=dimLzdimF+1=k+1. Applying 2.1 with j+ 1 playing the role
of d and f=card({x;,x,} UT) (thus j+1 < f<j+3) there is a Y= X such
that peint con Y and with card

YS2n-@G+D]+fS2n—j+1<s2n—k+1.
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