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ABSTRACT 

I f  a set  X c E n h as  non-empty k-dimensional interior, or if some point is 
k-dimensional surrounded, then the classic theorem of E. Steinitz may be 
extended. For example if X c E n has intk X ~ 0, (0 _< k _< n) and if p e int 
con X, then p e i n t c o n Y  for some Y ~  X with card Y_< 2 n - - k + l .  

1. Results. For  X in a linear space, the k-interior of X ,  denoted intkX, is 

the set of  all points s such that s is in the relative interior o f  some k-simplex 

contained in X;  equivalently s ~ intkX if and only if there exists a k-dimensional 

flat F such that s is interior to X n F relative to F .  Note that into X = X and 
if X is a subset of  an n-dimensional space then int, X is the usual interior of  X ,  

which will also be denoted by i n tX .  We will let c o n X ,  a f fX,  l i nX ,  and ca rdX 

denote the convex hull, the affine span, the linear span, and the cardinality of  X ,  

respectively. Of  the following three results, the first two are due to Steinitz [5] 

and the third to Reay [4]. 
A. I f  X c E "  and p s i n t c o n X  then p c i n t c o n Y  for some Y c X  with 

card Y < 2n. 

B. I f  X c E" is not contained in the union of n lines through p and if 

p ~ int con X then p Eint con Y for some Y ~  X with card Y < 2n - 1. 
C. For  n > 3, if X ~ E "  is connected and if p ¢ X  but p ~ i n t c o n X ,  then 

p ~ intcon Y for some Y~  X with card Y< 2n - 2. 

The purpose of this paper  is to prove (with other conditions on X) some 
analogous results, principally the following: 

1.1 THEOREM. I f  X c E"has  intkX # S~5(0 < k < n) and i f  p e i n t c o n X  then 
p e i n t c o n Y  for some Y ~ X  with c a r d Y < 2 n - k + l .  

1.2 THEOREM. For X ~ E" if  there is a k-dimensional flat F (0 < k < n - l )  

with int k (X  t7 F) # ~ (thus int k X # ~ ) ,  and i f  p q~ F is such that p e i n t c o n X ,  

then p ~ i n t c o n  Y for some Y c  X with card Y <  2n - k. 

1.3 COROLLARY. [ f  X c E"has i n tX  # ~  and i f  p ~ intcon X then p ~ intcon Y 

for  some Y = X  with card Y =  n + 1. 

No te  that 1.3 is a special case of  both 1.1 (with k = n) and of  1.2 (with 
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k = n - 1). Except for the case k = 0 in 1.1, each of these is a best possible result 

in the sense that for each result there are configurations which satisfy the hypo- 
thesis, but for which card Y cannot be reduced further. 

1.4 EXAMPLE In 1.1, to see that 2n - k + 1 is "bes t "  for 1 -< k < n let p 
be the origin in E", let B be a solid k-dimensional ball centered at p ,  let A 
be a linear basis for an (n-k)-dimensional  linear subspace supplementary to 

linB ( A = ~  when k = n )  and let X = B u A u ( - A ) = { - a [ a e A } .  Then if 
p e i n t c o n  Ywith X = X ,  Ymust  contain A U ( - A )  together with at least k + 1 

points of  B,  so card Y> 2(n - k) + k + 1 = 2n - k + 1. 

1.5 EXAMrLE. In 1.2, to see that 2n - k is "b e s t "  for 0 < k < n - 1, let p 

be the origin in E", let q ¢ p,  and let T be a solid k-dimensional ball centered 

at - q. with p ¢ aft T. (For k = 0, let T = { -  q}.) Let V be a linear basis for an 
( n -  k -  1)-dimensional linear subspace supplementary to lin T =  aff({p} u T) 
and let X = {q} u T u V u ( -  V). Then if p e int con Y with Y c X ,  Y must 

contain V U ( - V ) U { q }  together with at least k +  1 points of  T, so 

c a r d Y >  2 ( n -  k -  1) + k + 2 = 2 n -  k. 

2. Proofs. The proofs will be based on positive bases. Early papers on pos tive 
bases were those of  Chandler Davis [2] and McKinney [3]. We will use the ter- 

minology and theory as presented in Bonnice-Klee [1, pp. 5-7], and Reay [4, 
pp. 5-8]. In brief, for a set U contained in a linear space L, pos U will denote the 

set of all finite linear combinations of elements of  U having all coefficients non- 
negative. I f  A is a subset of  L such that pos U = A then we say that U positively 
spans A.  Thus pos U is the cone or "wedge"  generated by U having the origin 
as vertex. The set U is said to be positively independent if for all u e U, u 
pos (U ~ {u}). I f  U is positively independent and positively spans a linear space 
L, then U is a positive basis for L. Every linear space L admits a positive basis. 
In fact, if Lis n-dimensional and k is the cardinality of a positive basis for Lthen 
n + 1 < k < 2n and moreover all of  these values of  k are realizable. A basis with 
eardinality n + 1 is called a minimal basis for L. A linear subspace S of  L is a 

spanned subspace with respect to U if U n S positively spans S. In this case, if S 
is k-dimensional (k > 1) and U n S has k + 1 members (and hence U n  S is a 
minimal basis for S), S is called a minimal subspace with respect to U. The 

important connecting link between positive bases and the results we want to 

derive about a point p ~ int con X is the obvious fact that for X contained in an 

n-dimensional space E, 0 e int con X if and only if pos X = E. 

2.1 LEMMA. I f  X positively spans an n-dimensional linear space E, i f  M 
is a d-dimensional (1 < d < n) subspace of E and if U ,-- X is such that pos 
U = M where card U =f,  then there is a subset Y o f X  with card Y<= 2(n - d) + f  
which positively spans E, and hence the origin is in int con Y. In particular i f  
M is a minimal subspace with respect to X,  card Y< 2n - d + 1. 
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Proof. The case d = n has been noted above. For 1 -< d -< n - 1, let S be 

an (n - d)-dimensional subspace of E such that E is the direct linear sum of M 
and S and let 7r be the linear projection of E onto S with kernel M. Then 

zc(X-~ M) positively spans S and hence there is a subset W of X ~ M with 

n - d + 1 < card W__< 2(n - d) such that zrW positively spans S. By assumption 

there is a U c X  with card U = f  such that pos U = M. Letting Y= U U W, it 

follows that pos Y =  E (For details see [-1, Lemma 2.7] or [4, Lemma 2.3]) and 

that card Y_<_ 2(n - d) + f.  

Proof  of 1.1 and 1.2. Since we may assume that p is the origin, 1.1 follows 

from 2.1 once it is shown that there is a minimal subspace with respect to X 

having dimension at least k. To do this, begin by taking a point q ~ intk X such 

that q ~ p and let B k be a closed solid k-dimensional ball centered at q and 

contained in X .  By A. above, p is interior to some subset of  X which has at most 

2n points. Adjoining this finite set to B k we obtain a compact  subset having p in 

its interior. Thus we may assume that X is compact and hence so is con X .  Then 

the ray from q through p intersects the boundary of con X in some point r e con X .  

Let H be a hyperplane through r supporting con X .  Since H n con X -- con(H n X 
by a theorem of Caratheodory ([4, Theorem 1.1]) there is a subset T of H n X 

with card T__< n such that r e con T. By taking card T minimal with respect to 

the property that r e con T, T may be assumed to consist of  the verticles of  a 

j-simplex (0 < j <_ n - 1) having r in its relative interior. Let L denote pos ({q} t3 T) 

and let F denote affB k, so that L A F  is an affine space containing q. I f  

L n F = F then L = F and since q is in X ,  L is a minimal subspace with respect 

to X having sufficient dimension. I f  L c3F is properly contained in F ,  let A be 

an affine subspace of F which would be supplementary to L n F in F if q were 
the origin. Letting e denote the dimension of A, then e > 1 and A n B k = B e 

is a closed e-dimensional ball centered at q. Thus there is an e-simplex with vertex 
set V contained in B e and having q in its relative interior. Then p o s ( V u T )  
= lin(V U T) and 

d i m p o s ( V  u T) = d i m a f f T  + 1 = (card V) - 1 + card T 

so pos(V tA T) is a minimal subspace with respect to X which contains F (and 

p) and so is at least k-dimensional. This completes the proof  of  1.1. 

To prove 1.2, we note that under the stronger hypothesis of  1.2, B k 

may be chosen in the above proof  so that  p ~ F = affB k and hence the ray f rom q 

through p intersects F only at q. Therefore aff((p) • F) is (k + 1)-dimensional. 

But minimal subspace p o s ( V W T )  contains aff({p} WF) and therefore is at 

least ( k +  1)-dimensional. Now by 2.1 there is a subset Y of X with 
card Y <  2n - (k + 1) + 1 = 2n - k such that  p e i n t c o n  Y. 

3. Apparent interiors. The contribution of a point x ~ X to the set p o s X  

is not determined by how far x is f rom the origin, but only by the direction of x 
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from the origin. That is, x may be replaced in X by ~x (where ~ is any positive 
number) and pos X will not be changed. As a result conditions of the form "X 
is connected" or "intk XeZ~"  may often be replaced by much weaker con- 
ditions in theorems where the proofs use the theory of positive bases. 

As an example, for a given point p ~ E", let ~rp denote the usual radial pro- 
jection of E " ~  {p} onto the unit sphere centered at p. We say that X appears 
to be connected from p provided that ~p(X ~ {p}) is a connected subset of the 
sphere. The result C in the first section may now be given in the much stronger 

form: 
D. For n > 3, if X c E" appears to be connected from p and p e int con X 

then pe in tcon  Y for some Y c X  with card Y< 2n - 2. 
Note that the set X may appear connected from p and yet be totally disconnected. 
To obtain a similar generalization of 1.1 and 1.2, we say that X appears to 

have k-interior from p if there exists a k-dimensional flat F missing p and having 
the following property: 

If F '  denotes the cone p + pos (F - p), (that is, the cone with vertex p and 
generated by F) and if ~p maps F '  radially from p onto F then int k np(X U F') ¢ ~ .  
Equivalently, X appears to have k-interior from p if there exists a k-dimensional 
flat F missing p and such that in L = aff({p} u F) if F'  denotes the open "half  
of L"  containing F and bounded by the translation of F to p then the radial pro- 
ection of X u F '  from p has nonempty k-interior. 

3.1 TrIEOREM. I f  X c E " appears to have k-interior from p(O <- k <- n -  1), 
and if p ~ i n t c o n X ,  then p ~ i n t c o n Y  for some Y c X  with card Y=< 2 n - k .  

Proof. We may assume that p is the origin. With the notation of the preceed- 
ing definition, let X'--7rp(X r3 p o s F ) c  F and apply 1.2 to get a subset Y' of 
X w X '  for which pe in t conY '  with curdY' _-<2n-k. Now for each y~  Y', 
• y y e X  for some ~y>0 .  Let Y = ( a r o ~ l y e Y '  }. Then Y c X ,  p~in tconY,  

and card Y< 2n - k. 

For 1 _ k -< n, we say that q e E" is k-surrounded by X c E" if there exists a 
k-dimensional flat F through q with the following property: If 7rq is the radial 
proiection of E" onto the unit n-shell {z e E :  I z - q  I=  1} centered at q, then 
~(X n F) is all of the unit k-shell at q in F.  (Note that if q is k-surrounded, then 
X appears to have (k-1)-interior from q.) With this notation we may obtain 
a theorem concerning any p e in tconX whether X appears to have k-interior 

from p or not. 

3.2 TI~Om~M. For X c E" if there exists some point of E "which is k-sur- 
rounded (1 <= k < n) by X and if  p e i n t c o n X  then pe in tcon  Y for some Y c X  

with card Y = < 2 n - k + l .  

That 2 n -  k + 1 is "best"  is seen from Example 1.4. 
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3.3 THEOREM. For X c E n and p ~ i n t c o n X  i f  there is a k-dimensional f lat  

F missing p (1 -< k ~ n -  1) and a point q e F for  which 7r~(X N F) is the entire 

unit k-shell at q in F (thus q is k-surrounded by X)  then p e intcon Y for  some 

Y c X  with cardY =< 2 n - k  + 1. Moreover, i f  there is a such a q in X then 

there is a Y as stated but having card Y=< 2n - k. 

That 2 n -  k is best seen from Example 1.5. The following example shows 

that 2 n -  k + 1 cannot be improved on. 

3.4 EXAMPLE. Let V U W be a linear basis for E n where V and W are disjoint 

and Vhas k + 1 members. Let X = ( -  W) u W u ( -  V) u boundary con V. Then 
F = aft V is a k-dimensional flat and, if q is in the relative interior of  k-simplex 
con V, 7r~(X u F) is the entire k-shell at q in F .  Letting p be the origin, if p ~ int 
con Ywith Y c X,  Ymust contain ( -  W) u W u ( -  V) together with at least two 
points of the boundary of con V. Thus card Y >__ 2(n - k - 1) + (k + 1) + 2 = 

2 n - k + l .  

Proof  of 3.2 and 3.3. We may assume p is the origin. Since some q is k-sur- 

rounded by X ,  there is a k-dimensional flat F through q for which 7r~(X t~F) 
is all of  the unit k-shall S at q in F .  We may assume that q 4 p because 3.2 follows 

from 3.1 in the special case when p = q. The proofs proceed as the proofs of  1.1 

and 1.2 except that the role of B k (the closed solid k-dimensional ball centered 
at q) is played by S. So in this setting, F denotes affS and again L denotes 
pos([q]  U T) -- aff({p} U T).  If  q is in X or if L ~ F  is a proper atfine subspace 
of F then as in that proof  we obtain a subset V of  S whose convex hull is an 
e-simplex having q in its relative interior, and V u T is a minimal positive basis 
for the subspace pos(V u T) of dimension at least k (dimension at least k + 1 
with the hypothesis of  3.3). Now a point v e V might not be an element of  X ,  

but it is the radial projection gqx~ of  some point x~ e X .  If  V' is the set of e + 1 
points xv e X thus obtained from the e + 1 points of  V, then pos (V' u T) = pos 
(V U Tan d  the proof  is completed by applying 2.1 as before, obtaining Y c  X 
with p e  int con Y a n d  card Y < 2 n - k + l  in case of 3.2 and card 
Y< 2 n -  k in the case of 3.3. 

There remains only the case where q ¢ X.  In this case for both 3.2 and 3.3, 
we have to find a Y c  X with p e intcon Y and card Y< 2n - k + 1. As noted 
above, we may assume that L n F = F and hence L ~ F .  

I f  p e F ,  then ray pq is contained in F and therefore intersects S. Thus there 
is a point x e X on the open ray from p through q.  Hence pos({x} U T) equals 

L and is a minimal subspace with respect to X having dimension > k. Again 
2.1 yields a desired Y. 

So assume that p ~ F .  Any line in F through q has at least one point of  X on 
each side of  q. Let xl  and xz be two such points of  X such that q econ{xl ,x2} .  

Then pos({xl,x2} u T) = pos({q} U T) = L and, since x 1 and x z are in 
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F c  L, pos ({xl,x2} UT) = L. With j + 1 denoting card T, since peL., ,F,  
j + l = d i m L > d i m F + l = k + l .  Applying 2.1 with j + l  playing the role 
of d and f =  card({xl,x2} u T) (thus j + 1 < f < j  + 3) there is a Y c  X such 
that p ~ int con Y and with card 

Y=< 2 [ n -  (j + 1)] +f<= 2 n -  j + 1 _< 2 n -  k + 1. 
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